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Abstract. In this paper, we propose several im-
provements of the Object Scene Flow (OSF) algo-
rithm [14]. The OSF does not use the scene flow
estimated in previous frame nor the object labels and
their corresponding object motion information. The
goal of this paper is to use this information in order
to produce temporarily consistent output throughout
the whole video sequence. We evaluate the progress
on the KITTI’15 multiframe dataset. We show that
propagating the labels and the corresponding mo-
tion information using the estimated flow reduces the
false negative rate (missed cars). Together with two
further proposed improvements the overall reduction
of false negative is 42%. The proposed improvements
also reduce EPE on the KITTI’15 scene flow from
10.63% to 9.65%.

1. Introduction

In this paper, we focus on the temporal consis-
tency in the scene flow estimation. Most of the cur-
rent methods do not use temporal consistency or data
from previously computed frames. We propose im-
provements, which add temporal consistency to the
Object Scene Flow (OSF) algorithm [14]. The OSF
estimates independently moving objects as part of
scene flow estimation. We show that adding tempo-
ral consistency leads to a more accurate scene flow
estimation as well as more precise estimation of in-
dependently moving objects.

Accurate and efficient estimation of the scene flow
is still an unresolved problem. Figure 1 shows ex-
amples of estimated optical flow by state-of-the-art
scene flow and optical flow estimation algorithms
on our own sequences. Even the best methods of-
ten fail when the conditions differ from the ones of
KITTI [14]. In accordance with the official KITTI
results, it could be seen that stereo methods work bet-

ter than monocular. We have observed OSF produce
more stable results consistent over various conditions
than the KITTI first ranked PRSM [24]. It also pro-
vides independent motion segmentation.

The original OSF is not using any temporal con-
sistency or any information from the previous image
frames of the same sequence. The algorithm uses
only two consecutive stereo frames. The main con-
tribution of this paper is the addition of temporal con-
sistency to the OSF algorithm to stabilise scene flow
estimation so that the same independently moving
objects are detected more often through the sequence
of images. We experimentally verify the proposed
improvements on the KITTI’15 multi-frame vision
benchmark. These improvements reduce the number
of missed vehicles by 42%. Moreover, they also re-
duce the erroneous pixel percentage from 10.63% to
9.65% of estimated scene flow.

2. Related Work

The three-dimensional scene flow aims to re-
cover dense or semi-dense 3D geometry and 3D mo-
tion. Vedula et al. introduced the concept of scene
flow [21] as a three-dimensional vector field describ-
ing the motion of each three-dimensional point on
each surface in a scene. We can look at scene flow
as a combination of dense stereo reconstruction and
optical flow estimation, which are both challenging
problems themselves. The scene flow can be used as
input for a lot of high-level application as e.g. obsta-
cle detection or prediction collision.

Scene flow is computed using consecutive video
frames from calibrated stereoscopic cameras. Sim-
ilarly to the optical flow methods, approaches for
scene flow estimation are often based on variational
methods [21, 1, 8, 22, 26], feature matching [13], or
scene flow representation using stixels [17].

The algorithms for scene flow must cope with the
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Figure 1. State of the art optical flow estimation results on our internal dataset. Compared optical flow methods: C+NL-
fast [20], FlowNet [5], EpicFlow [19], PCA-Layers [27] and scene flow methods PRSM [24], OSF [14]

Figure 2. Overview of the Object Scene Flow algorithm [14]. Superpixel segmentation S, disparity D, sparse-flow Fsp

and ego-motion Fego of the camera are estimated from input stereo images. Then the independent motion candidates are
estimated. Labels of motion candidates to proper segments are assigned during optimization. Finally, the output in the
form of scene flow and label map are computed from motion candidates and segments parameters using MP-PBP [16]
and TRW-S [10].

same problems as algorithms for optical flow and
disparity estimation i.e. occlusions, large displace-
ments or radiometric challenges [11, 14]. Although
more information is avaible for the scene flow esti-
mation (more cameras), there are also more param-
eters to estimate. Recently, many successful meth-
ods [23, 28, 24, 14, 13] started using small planar
patches for a description of the scene instead of sim-
ple pixel-wise representations [8, 21]. Segmenta-
tion of the scene into rigid planar regions increases
robustness and decreases the number of parameters
which must be estimated [23].

The Object Scene Flow (OSF) [14] further intro-
duces an idea that scene flow can be composed from a
small number of independent motions. This assump-
tion leads to a strong regularisation for scene flow
computation and results into a more accurate estima-
tion. Each independent motion is further restricted
spatially, allowing independently moving object seg-
mentation.

Since Murray and Buxton [15], various ap-
proaches using temporal consistency have been pro-

posed for optical and scene flow. Some of them rely
on smoothness assumption of trajectory over multi-
ple frames. A spatio-temporal smoothness term for
the optical flow was proposed in [15]. However,
the algorithm does not work well for large displace-
ments. Volz at al. [25] proposed adaptive trajectory
regularisation over five consecutive frames. Motion
fields of all frames are parametrised with respect to
the central reference frame.

The others use some kind of tracking. Devernay at
al. [4] used tracking of 3D points and surfels (small
planar square regions) for temporally consist scene
flow estimation also proposed extension of [12] us-
ing multiple cameras. Rabe at al. [18] used extended
Kalman filter for tracking, but instead of tracking
matched features they tracked dense scene flow com-
puted by [26]. Although the algorithm is real-time,
its use is rather limited, since it is not able to han-
dle with fast motions. Using robustly linked frames,
Hung at al. [9] proposed optical flow and stereo es-
timation from long-temporal motion trajectories but
algorithm needs the whole sequence for the computa-



tion, thereby it is inappropriate for online estimation.
Recently, Vogel at al. [23] achieved temporal co-

herence using sliding temporal windows for their
both viewpoints and multi-frames consistent model.
However, the method does not produce independent
motion segmentation like OSF, which is not only de-
sirable as an output but functions also as a strong reg-
ularisation for the scene flow estimation.

3. Object Scene Flow Algorithm

The OSF decomposes each dynamic scene using a
small number (hundreds) of 3D planar patches. The
algorithm assumes that each patch belongs to one of
a few indentedly moving objects, each with its own
rigid motion (6 degrees of freedom). Each of the pla-
nar patch is parametrised by four variables: Three
of them for the plane parameters and one for a label
index. Each label corresponds to an object motion.
Further, it is assumed that the set of independently
moving objects is small (up to ten). Scene flow esti-
mation is solved as a labelling problem, where each
of the planar patches is assigned to one of the rigid
body motions using a discrete-continuous CRF. The
CRFs objective is defined as a weighted sum of unary
and pairwise terms computed from disparity, super-
pixels, sparse optical flow and motion candidates.

The structure of the OSF algorithm is shown in
Figure 2. The input to the algorithm are two con-
secutive stereo frames. The left image at time t is
used as the reference image. The superpixels and
the initial disparity is computed by StereoSLIC [28]
and SGM [7]. All reference view pixels are seg-
mented into superpixels. The superpixels and the ini-
tial disparity are computed by StereoSLIC [28] and
SGM [7]. Each superpixel is assigned with its patch.
The planar patch plane is computed by fitting a plane
to the corresponding disparity measurements. The
camera ego-motion is computed [6] since is assumed
that dominant motion of the scene is induced by the
motion of the camera.

The rigid body motion hypotheses of indepen-
dently moving objects are computed next. First, the
ego-motion outliers are found used as an input to
a sequential RANSAC which greedily produces hy-
potheses. Finally, the CRF is solved, and the planar
patches are assigned with the motion hypotheses as
mentioned above. The OSF uses max-product parti-
cle belief propagation [16] and tree-reweighted mes-
sage passing [10] for the optimization. Details can be
found in the original paper [14]. The estimated dense

Figure 3. Scheme of object motion labels propagation.
Dense 3D point cloud Xt−1

Lk
is computed from segments

assigned with motion ot−1
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formed by ot−1
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priated areas where X̂t

Lk
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Lk
are reprojected.

scene flow is computed from the planar patches pa-
rameters.

4. Object Scene Flow with Temporal Consis-
tency

In this section, we present our extensions to the
OSF algorithm. We focus on the temporal consis-
tency of the independently moving objects. We will
discuss benefits of individual improvements in Sec-
tion 5.

4.1. Notation

The OSF algorithm decomposes a dynamic scene
into a set of 3D planar patches si = (ni, li), where
ni is a normal of the plane, li is a label of 3D mo-
tion li ∈ {1, . . . , |O|} and O is a set of a few in-
dependent motions. Each 3D motion ok ∈ O is
parametrised by rotation Rk ∈ SO(3) and transla-
tion tk ∈ R3. Each plane normal ni is computed
from a superpixel i ∈ S, where S is a set of superpix-
els in the reference frame, by robustly fitting a plane
to the depth values obtained from the disparity. The
plane parameters provide the mapping between 3D
points Xi = [xi, yi, zi]

T and its corresponding 2D
points xi = [ui, vi]

T. The frame t is considered to be
the reference frame, t+1 is the next frame and t− 1
is the previous frame etc.

4.2. Object Motion Labels Propagation

As noted above, the OSF does not use any infor-
mation from the previous stereo image pairs. We ex-
pect that adding temporal consistency will lead to a
more accurate scene flow estimation. We also ex-
pect that some objects that are missed by standard



OSF will be detected thanks to the temporal consis-
tency. Finally, the object labels should become stable
throughout the sequence.

Assuming constant velocity, we propagate esti-
mated motion parameters ot−1

k from the frame t − 1
and use them for estimation of otk in frame t. How-
ever, we do not simply use ot−1

k as a motion candi-
date at frame t. Instead, we use disparity and sparse
correspondences between the frames t and t + 1 to
find a good candidate motion otk as it is shown in
Figure 3.

Let Lk = {i; li = k} be a set of indices of all
planar patches si sharing the same motion ot−1

k and
let Xt

Lk
be a set of all 3D points associated to all

segments from Lk. We get a set of 3D points X̂t+1
Lk

using a constant motion assumption.

X̂t+1
Lk
' Rt−1

k Xt
Lk

+ tt−1
k (1)

Since the constant motion assumption is only ap-
proximately valid, we use 3D points Xt

Lk
and X̂t+1

Lk

only to estimate the bounding box of expected object
location. The actual positions of 3D points are then
estimated from disparity and sparse correspondences
in the following way. We re-project the 3D points
Xt

Lk
and X̂t+1

Lk
back to the image plane as 2D points

x̂t
Lk

and x̂t+1
Lk

, respectively. We compute sparse flow
F t,t+1
sp correspondences [6] between frames t and
t + 1, with larger density than in the original OSF
(five times in our case). These correspondences are
computed in the image area bordered with the small-
est rectangular bounding box containing all repro-
jected points x̂t

Lk
and x̂t+1

Lk
, respectively. We enlarge

the bounding box by 20 pixels at each side to increase
robustness. For all computed correspondences, we
estimate their corresponding 3D points Xt

Fsp
,Xt+1

Fsp

using stereo camera calibration and estimated dispar-
ity.

To remove obvious outliers, we remove all points
Xt+1

Fsp
(with their Xt

Fsp
correspondences) which are

further away from the median(X̂t+1
Lk

) than a thresh-
old θsp

1. We also remove all correspondences
which have similar motion as the camera ego-
motion. Motion hypothesis candidate otk =

(
Rt

k, t
t
k

)
is estimated on the remaining correspondences by
RANSAC. We propagate every object motion ot−1

k

except the ego-motion.

1θsp = 3 m; Similar process as is used in [14]

Figure 4. Evaluation of independently moving objects la-
belling from Object Scene Flow algorithm [14] on the
KITTI’15 dataset. Missed vehicles are coloured in red;
correctly detected vehicles are in green, and falsely de-
tected vehicles are coloured in yellow. As false positive
detection are considered also moving objects e.g. cyclists,
trucks, persons, etc. since foreground ground-truth con-
tains only moving cars.

4.3. Ego-motion Outlier Redefinition

This motion hypothesis propagation has a positive
effect on the error of the estimated scene flow and
decreases the number of missed vehicles. However,
the label propagation also increases false positive de-
tection of moving vehicles (Table 2). This is caused
mostly by propagating additional false positive de-
tection from previous frames as could be seen in Fig-
ure 4. The most of them are at the sides of the images
as is shown in the Figure 5.

The OSF algorithm finds 3D motion hypotheses as
ego-motion outliers in sparse flow correspondences.
A correspondence is considered as ego-motion out-
lier when its end-point-error Eepe(u, v) is greater
than a fixed threshold (2 px) for all (u, v) where Fsp

is defined.
Figure 5 shows the ego-motion outliers of the orig-

inal approach (labelled with red colour). It could
be observed that the fixed threshold works well at
medium flow magnitudes but worse at the boundary
of the images where the optical flow is larger and a
small disparity error causes significant EPE. To elim-
inate this effect, we propose to use a dynamic thresh-
old which depends on the motion magnitude. Cor-
respondence in the image point (u, v) is labelled as
ego-motion outlier if

(Eepe(u, v))
2 ≥ max

(∥∥F u,v
ego

∥∥
2
, θmin

)
, (2)

where θmin =
√
2 is a minimal optical flow threshold

to increase robustness.
Application of this change is shown in Figure 5.

The false ego-motion outliers at image edges and the
true estimated outliers are found disappear on the dis-
tant vehicles.



Figure 5. Demonstration of ego-motion outlier redefini-
tion. Green color marks ego-motion inliers and red color
ego-motion outliers. (top) original approach and (bottom)
proposed approach. The most significant difference is on
the sides of the images, where lots of false-positive ego-
motion outliers disappeared. Red ellipses mark areas with
significant number of false-positives ego-motion outliers
and yellow ellipses mark false-negative ego-motion out-
liers.

4.4. Robust Motion Hypotheses Generation

Examining further the results, most of the remain-
ing errors are caused by the random nature of the
algorithm. Depending on the initialisation, we ob-
served a high variance in its output. Due to in-
accurate matches, this approach of multi-instance
model fitting could produce imprecise models. Inac-
curate models hypotheses are then discarded during
labelling and optimization step of the OSF algorithm.
Particle filtering in the optimization loop should fix
the inaccuracy of the models, nevertheless this works
only for small deviations.

Figure 6 compares the best and the worst case
from 10 randomly initialised runs of the algorithm
on the same input data. Possible reason of the poor
hypotheses could be a small number of correspon-
dences and inaccurate estimated disparity of which
are computed 3D points as an input to the RANSAC.
A small error at disparity leads to a significant error
of estimated model.

To alleviate these problems we decided to use LO-
RANSAC [3] to generate motion hypotheses. Be-
cause of its local optimization step it tends to produce
more precise motion hypotheses. As we will demon-
strate in Section 5, the number of missing cars is the
lowest from all tested combinations. The variance of
the algorithm is also reduced.

Figure 6. Demonstration of OSF variance. (top) shows
the best result and (bottom) shows the worst result on a
random KITTI’15 sequence with ten randomly initialised
computations. Left images show the final labels of in-
dependently moving objects (background not shown) and
right images represent EPE of the found optical flow (red
color for EPE ≥ 3px).

FP σFP FN σFN
OSF [14] 236.6 14.7 170.4 3.3
+ label propagation 276.1 11.7 153.5 8.4
+ dynamic outliers 219.6 8.3 142.7 3.0
+ LO-RANSAC (3 stereo pairs) 244.4 12.4 125.3 2.9
+ LO-RANSAC (5 stereo pairs) 235.3 9.3 121.0 3.6
+ LO-RANSAC (12 stereo pairs) 236.3 17.0 123.2 5.4

Table 2. Comparison of detection results of moving vehi-
cles. Tested on the KITTI’15 training multiview dataset.
We run listed algorithms algoritm 5 time for each se-
quence and each extension. FP and FN denote mean of
false positive (wrong detection) and mean of false nega-
tive (missed detection) of moving vehicles respectively. In
addition the standard deviations σFP and σFN are shown
for better comparison.

5. Experiments

In this section, we demonstrate the results of the
proposed extensions. For evaluation, we used the
standard KITTI’15 benchmark [14]. The benchmark
contains stereo camera sequences with large dis-
placements and nontrivial environment conditions.

5.1. Evaluation protocol

To evaluate the scene flow, optical flow, and dis-
parity, we use the standard KITTI’15 metric – a per-
centage of erroneous pixels. Pixels are considered
erroneous when the end-point-error exceeds 3 pixel
and 5% according to ground truth. We also report the
number of undetected moving vehicles – false nega-
tives (FN), and the number of falsely detected vehi-
cles – false positives (FP). We label objectOk as true
positive if

|LGTm ∩ LOk |
|LGTm ∪ LOk |

≥ 0.5, (3)

where LGTm is the set of pixels of the mth moving
vehicle marked in the ground truth and LOk is a set
of pixels labelled as k-th object by the proposed al-



10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
0

2

4

6

8

10

12

14

16

18

20

%
 in

co
rr

ec
t (

3p
xl

 th
r)

image pair

OSF (mean = 6.75%, std = 1.01%)
OSF+LP (mean = 7.11%, std = 1.29%)
OSF+LP+DO (mean = 7.06%, std = 1.38%)
OSF+LP+DO+LO-RANSAC (3 frames) (mean = 6.16%, std = 0.66%)
OSF+LP+DO+LO-RANSAC (5 frames) (mean = 6.52%, std = 1.00%)
OSF+LP+DO+LO-RANSAC (12 frames) (mean = 6.56%, std = 1.07%)
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Figure 7. Evaluation across combination of proposed improvements and OSF on all sequences from KITTI’15 training
dataset (bargraphs only for every 10th, mean and variance for all 200 sequences). Results show huge variace of OSF (and
OSF with proposed improvements) during 5 computations on the same data.

Alg.\Error D1-bg D1-fg D1-all D2-bg D2-fg D2-all Fl-bg Fl-fg Fl-all SF-bg SF-fg SF-all
PRSF [23] 4.74 % 13.74 % 6.24 % 11.14 % 20.47 % 12.69 % 11.73 % 27.73 % 14.39 % 13.49 % 33.72 % 16.85 %
CSF [13] 4.57 % 13.04 % 5.98 % 7.92 % 20.76 % 10.06 % 10.40 % 30.33 % 13.71 % 12.21 % 36.97 % 16.33 %
OSF [14] 4.54 % 12.03 % 5.79 % 5.45 % 19.41 % 7.77 % 5.62 % 22.17 % 8.37 % 7.01 % 28.76 % 10.63 %
PRSM [24] 3.02 % 10.52 % 4.27 % 5.13 % 15.11 % 6.79 % 5.33 % 17.02 % 7.28 % 6.61 % 23.60 % 9.44 %
OSF+TC (ours) 4.11 % 9.64 % 5.03 % 5.18 % 15.12 % 6.84 % 5.76 % 16.61 % 7.57 % 7.08 % 22.55 % 9.65 %

Table 1. Quantitave comparison with the state-of-the-art results (all pixels). Columns mark categories of evalution: scene
flow as SF, optical flow as F, disparity D1 for the first frame of the test pair and D2 for the second; and subcategories:
evaluation over bg background regions, evaluation over fg foreground regions and all evaluation over all ground-truth.
Categories where OSF+TC performs better than the original OSF are highlighted in grey and the best results are in bold.

gorithm.

5.2. Object Scene Flow Variance Analysis

As was mentioned above, we noticed that the OSF
results vary significantly depending on the random
seed initialization. To investigate this variance, we
removed all fixed random generator seeds in all parts
of the OSF algorithm and instead initialised all the
seeds randomly for each computation. We then run
the OSF algorithm 30 times for each sequence. Fig-
ure 8 shows variance of the OSF results. We noticed
that sequences with large variance have difficult ra-
diometric conditions or large displacements. We thus
report mean and standard deviation of all our result
for better comparison.

5.3. Evaluation of the Proposed Object Scene Flow
Extensions

We compare results of our improvements accord-
ing to various quantitative criteria. Results from the

evaluation of vehicle detection are shown in Table 2.
In Table 3 we show the results of erroneous pixels
percentage for different scene flow estimation vari-
ants. Figure 7 shows results (mean and standard de-
viation) of the OSF algorithm and its extensions.

Object Motion Label Propagation. The motion
hypotheses propagation influence is shown in Ta-
ble 2. The number of undetected vehicles decreases.
On the other hand, the number of false positive detec-
tions increases. Besides that we observe the increase
of scene flow error as shown in Table 3. As discussed
above, this is connected with the propagation of false
positives in time.

Ego-motion Outlier Redefinition. Next, we eval-
uate the ego-motion outlier re-definition. It helps to
decrease the number of false positive detections as
shown in Table 2. Also the number of false detec-
tions decreases. The scene flow is still worse than
the original OSF but gets slightly better results com-
pared to the previous experiment (Figure 7).



Alg.\Error D1-bg D1-fg D1-all D2-bg D2-fg D2-all Fl-bg Fl-fg Fl-all SF-bg SF-fg SF-all
OSF [14] 3.77 % 7.30 % 4.45 % 4.22 % 12.41 % 5.60 % 4.45 % 20.36 % 7.04 % 5.48 % 22.95 % 8.20 %
+ label propagation 3.85 % 6.78 % 4.52 % 4.38 % 10.34 % 5.65 % 4.68 % 18.90 % 7.44 % 5.73 % 21.41 % 8.51 %
+ dynamic outliers 3.74 % 6.50 % 4.39 % 4.37 % 9.57 % 5.56 % 4.75 % 17.77 % 7.34 % 5.78 % 20.43 % 8.45 %
+ LO-RANSAC (3 stereo pairs) 3.78 % 6.11 % 4.33 % 4.41 % 8.49 % 5.30 % 4.79 % 12.74 % 6.37 % 5.82 % 15.21 % 7.52 %
+ LO-RANSAC (5 stereo pairs) 3.81 % 6.33 % 4.42 % 4.43 % 9.04 % 5.51 % 4.81 % 14.05 % 6.79 % 5.86 % 16.54 % 7.91 %
+ LO-RANSAC (12 stereo pairs) 3.81 % 6.28 % 4.42 % 4.44 % 8.76 % 5.47 % 4.78 % 14.01 % 6.80 % 5.82 % 16.52 % 7.92 %

Table 3. Scene flow evaluation of proposed improvements. Tested on the KITTI’15 training multiview dataset. Columns
marks categories of evalution: scene flow as SF, optical flow as F, disparity D1 for the first frame of the test pair and D2
for the second; and subcategories: evaluation over bg background regions, evaluation over fg foreground regions and all
evaluation over all ground-truth.

Alg.\Error D1-bg D1-fg D1-all D2-bg D2-fg D2-all Fl-bg Fl-fg Fl-all SF-bg SF-fg SF-all
PRSF [23] 4.41 % 13.09 % 5.84 % 6.35 % 16.12 % 8.10 % 6.94 % 23.64 % 9.97 % 8.35 % 28.45 % 11.95 %
CSF [13] 4.03 % 11.82 % 5.32 % 6.39 % 16.75 % 8.25 % 8.72 % 26.98 % 12.03 % 10.26 % 32.58 % 14.26 %
OSF [14] 4.14 % 11.12 % 5.29 % 4.49 % 16.33 % 6.61 % 4.21 % 18.65 % 6.83 % 5.52 % 24.58 % 8.93 %
PRSM [24] 2.93 % 10.00 % 4.10 % 4.13 % 12.85 % 5.69 % 4.33 % 14.15 % 6.11 % 5.54 % 20.16 % 8.16 %
OSF+TC (ours) 3.79 % 8.66 % 4.59 % 4.18 % 12.06 % 5.59 % 4.34 % 12.86 % 5.89 % 5.52 % 18.02 % 7.76 %

Table 4. Quantitave comparison with state-of-the-art results (non-occluded pixels). Columns marks categories of eva-
lution: scene flow as SF, optical flow as F, disparity D1 for the first frame of the test pair and D2 for the second; and
subcategories: evaluation over bg background regions, evaluation over fg foreground regions and all evaluation over all
ground-truth. Categories where OSF+TC performs better than the original OSF are highlighted in grey and the best results
are in bold.
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Figure 8. Variance of the OSF algorithm (bargraphs only
for every 10th, mean and variance over all 200 sequences).
The central line inside each box indicates the median. The
bottom of the box refers the 25th percentile and the top of
the box refers to the 75th percentiles, respectively. Out-
liers are marked with the red symbol ‘+’.

Robust Motion Hypotheses. The additional ap-
plication of LO-RANSAC in the motion hypotheses
estimation leads to a significant decrease of the scene
flow error from 8.2% to 7.52% (Tab. 3) compared to
the original OSF algorithm. Besides, the number of
false negatives also decreases. However, the number
of the false positive increases (Tab. 2). In the case of
application of all extensions, we try a different num-
ber of frames as input to the temporally consistent
OSF.

We run experiments for 3, 5 and 12 frames. Us-

ing more frames reduces FPs and FNs as shown in
Table 2, however the scene flow results degrade a
bit (Table 3, Figure 7). This effect is most likely
caused by the different density of ground-truth in the
KITTI dataset (foreground is about 4× denser). Ev-
ery super-pixel falling on both fg and bg is more
likely to be removed from the motion hypothesis
when propagated longer. This nibbling of the car
borders however causes higher fg scene-flow errors
as shown in Table 3. We believe that this effect could
be mitigated by adding temporal consistency also to
the super-pixels [2], but leave it as a future work.

Summary. Based on the results, the propagation
through three frames was chosen for further compar-
ison with the state of the art. The level of false pos-
itives and false negatives is similar to other variants,
but the scene flow errors are significantly lower. The
method is termed OSF+TC in the comparisons. Fig-
ure 8 shows the mean and standard deviation of the
obtained results over all sequences.

5.4. Comparison with the State of the Art

We compare the best combination of all proposed
extensions (using three stereoscopical frames tempo-
ral consistency) with the best-ranked KITTI’15 sub-
missions in the scene flow category. Table 1 shows
the results for evaluation on all pixels from ground-
truth in the image frame. OSF+TC decreases EPE of
the original OSF from 10.63% to 9.65% and achieves
the second position in the scene flow estimation to-
tal. The loss to the first place (PRSM [24]) is less



(a) Original (b) Proposed
Figure 9. Propagation of moving object label through time. Three moving objects (id=2,7,9) in (b) have stable label over
the whole sequence as opposed to the original approach in (a). Car 2 is detected earlier due to the stronger LO-RANSAC
model estimation and is then correctly propagated. Object 7 is a man on a bicycle. Also many false positives are reduce
due to the ego-motion outlier redefinition.

than a quarter percent. Moreover, OSF+TC ranked
first for scene flow evaluation on non-occluded pix-
els as shown in Table 4, with an improvement to the
original algorithm by 1%. Finally, OSF+TC achieves
the first position for scene flow and optical flow
over foreground regions for both, non-occluded pixel
evaluation and all pixel evaluation.

6. Conclusion

We presented improvement of Object Scene Flow
algorithm aiming to increase accuracy and robust-
ness of individually moving objects hypotheses es-
timation. We demonstrated that the original algo-
rithm was overcome with our improvements in the
challenging KITTI’15 flow benchmark by 1% in the
flow category. Moreover, we stabilised the labelling
of moving objects and reduced the number of non
found objects to half compared to [14].
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